XHTML & CSS

Course notes

Session 1
XHTML & CSS
XHTML stands for eXtensible HyperText Markup Language.

CSS stands for Cascading Style Sheet

HTML (and the web) was created by Tim Berners-Lee as a method of transmitting information, documents and reports between research institutions. His idea was to ensure that any computer with any operating system would be able to read the transmitted information.

HTML is the language of the web. It is not a true programming language, such as those used to create software. Instead, it is a ‘markup’ language. It indicates how the page should be structured.

HTML takes care of the structure of the page, while CSS controls the formatting and layout of the page.

All web pages are created using HTML (or the up-to-date XHTML). This is true regardless of the technology added to the page or the way the page has been created. The version used now is XHTML 1.0 and CSS levels 1 & 2.

The organisation set up to define a set of standards for the web is the World Wide Web Consortium (W3C). Their website can be found at http://www.w3c.org
It is essential to visit this site regularly and keep yourself acquainted with the changing developments of the web. It is necessary to always write W3C standards compliant web pages – pages that follow the rules and guidelines set down by the consortium.

Web design software

Software
There are many programs that can be used to create web pages. Some of these include Adobe GoLive and Dreamweaver, Microsoft FrontPage and Visual Studio. These are all known as WYSIWYG web design programs. What You See Is What You Get. As you design the page, all you have to worry about is the content, the formatting and the layout. The software then writes the code in the background.

While this may seem a good idea initially, in the long run it is actually a disadvantage. It is essential to learn how to write good XHTML and CSS yourself, but using software to write it on your behalf robs you of this opportunity. Using software does not always write the best, most efficient code. Often these programs will use poor formatting techniques to force the page to look how you want it to appear. It forces you to think about web design in terms of physical layout rather than using logical structure.

So it is far more efficient to hand write your own code. Your pages will be much smaller in size and be better formatted. It is far more creative to write the code yourself as opposed to have some program write it for you. As you progress in your web design career and start using advanced scripting technologies, you will not be able to use such programs to write your code, but instead will have to write your code yourself.

It is to your advantage to start to learn to write your own code, and continue to do so throughout your career. In fact, it is completely unnecessary to use any software package to create web pages. By simply hand writing your own code, not only can you create any web page you care to imagine, but you will also be able to create far more advanced pages that are not possible by using software packages. You will be far more creative, be able to write standards compliant web pages and learn much faster.

Creating web pages

Text editor
To create a web page, in fact to create any web page imaginable, no matter how complex, no matter how many advanced features that web page will have, all you need to use is a simple, basic text editor.

Notepad
Do you use a Windows based PC? All you need is Notepad. This can be found by going to Start | Programs | Accessories | Notepad.

Text Edit
Do you use an Apple Macintosh? All you need is Text Edit (or Simple Text). They can be found by opening the Hard Disk on the desktop and looking in your Applications folder. If you still can't find one of these programs, use the search utility called Sherlock.

Vi Improved

Do you use a flavour of Linux or UNIX? There are a variety of text editors you can use. VIM (Vi Improved), or the original Vi are excellent and easy to use text editors. Alternatively you can use EMACS. Just type ‘vim’, ‘vi’ or ‘emacs’ at the command prompt to start the editor.

Viewing web pages

Browsers
Now that you can create web pages, you need to be able to view them. Therefore you will need a browser to view your web pages. However, there are a variety of browsers in existence, and different people use different browsers.

To view web pages, it is entirely up to you which browser you use. Different browsers, and different platforms, will display web pages differently, very differently in some cases.

So as a web designer, it is important to be able to test your web pages on as many different browsers as possible. If you can make your pages work with several different browsers, there is a good chance that most of your visitors around the world will be able to view your pages – and therefore spend money on your site, which at the end of the day is your goal, if it is a business oriented site.

Microsoft Internet Explorer
The world’s most unfortunate browser. However due to people’s ignorance, it remains the most commonly used browser. Therefore it is essential to test your pages with this browser. [Windows/Linux PC & Apple Macintosh]

Opera
The fastest browser on earth. Not only does it display your pages far more quickly than any other graphical browser, but it has an advanced range of easy to use features, making internet use a pleasure. Some of these features include: speech recognition (voice control) and text-to-speech (it reads out web pages); speed dial (instant web page access); advanced security features; download management and a torrent handler. [Windows/Linux PC & Apple Macintosh]

Mozilla Firefox
Another fantastic browser, again with lots of exciting features and a variety of browser enhancing plugins. [Windows/Linux PC & Apple Macintosh]

Safari
A well developed browser, originally designed for Apple computers. [Apple Macintosh & Windows PC]

Camino
An even better browser for those users who still use Apples. [Apple Macintosh]

Lynx
A text only browser, which displays pages instantly. It is important to check how well your pages work without pictures. Can be used with screen readers. [Windows/Linux PC]

JAWS
A text to speech screen reader, used by blind and partially sighted people. What do your pages sound like when read out? [Windows PC]

Build Your Own Computer

1. New Computer
Celebrate your new web design skills and start your web design career with a brand new computer (laptop or desktop). In less than 10 weeks, you can own a fantastic quality computer, far cheaper and much better quality than one you could purchase in a shop. Don’t suffer with your old, slow computer. Just think how many hours of your valuable time you waste waiting for your old computer to do the simplest of tasks.

Join the course ‘Build Your Own Computer’.

Good reasons why you should join:

· Save money – building a computer will be much cheaper than buying the same computer from a shop

· Half price – typical savings can be as much as half the price of the same shop bought computer

· Discount – we order the components for you at discounted prices, so you don’t have to worry about finding them

· Best quality – the quality of the brand name components that make up the computer are far superior than the ones used in a shop

· Individual design – your computer can be customised to exactly what you want and need, unlike shop bought computers, where you have to buy and pay for poor quality things you will never use

· Take control – you will have an excellent understanding of how your computer works and what is inside

· Learn – this course is for beginners; anyone will be capable of easily building, upgrading or adding to their computer at any time

· Longevity – your machine will last much, much longer than any shop bought machine

· Computer now! – if you can’t attend the course but still need a computer, we can arrange to build your computer for you

· Laptop – although you cannot build your own laptop, we can order one with very high specifications for you

· Guarantee – all components are fully guaranteed for a minimum of one year, with several having a three year guarantee. In the unlikely event of anything not working, we will have it repaired or replaced

· Miscellaneous – buy only what you need: it may be possible to use your existing TV as your computer monitor; printers, scanners, webcams and digital cameras can be purchased if you need them; even re-use compatible components from your old computer to save money

If you want more information, or want to discuss your computer needs, components, and how little it will cost, contact rakesh.pawaroo@lbhf.gov.uk

XHTML & CSS

Course notes

Session 2

XHTML Syntax

Tags
All web pages are created using XHTML tags. All tags look like this:

<element>...</element>

Tags are made up of elements. An element describes the type of formatting that will occur on the web page. For example if the element ‘big’ is used, then text will be written larger than normal.

<big>...</big>

All XHTML elements are surrounded by ‘angle brackets’ < >. They are now called tags.

All XHTML tags appear in pairs. The first tag is the ‘start’ or ‘opening’ tag. The second tag is the ‘end’ or ‘closing’ tag. They always look identical to each other, except that the ‘end’ tag has a ‘forward slash’ after the left angle bracket and before the element.

All XHTML tags are always written in lower case, never with capital letters.

The template is used to create all web pages. Every page created will begin with the set of tags used in the template.

Each pair of tags in the template will be used a minimum and maximum of only once per page, and will always be written in the order they appear.

For the time being, all tags other than those that appear in the template will be written in between the body tags.

 <?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Enter the title text of your XHTML web page here</title>

</head>

<body>

Enter the body text of your XHTML web page here

</body>

</html>

Instructions:
1. Type the above exactly as shown, using notepad – observing upper and lower case, and all punctuation symbols
2. Do not leave any spaces or blank lines at the top, before you start typing
3. Check your work thoroughly when you have finished
4. Save this file as transitional-template.html
5. Do NOT use any capital letters, spaces or punctuation (except for hyphens and full stops) in the file name
6. Remember to select All Files from the Save As Type drop-down menu
From HTML code to Browser in 10 easy steps!
Creating web pages is simply a process of typing plain text HTML tags into a basic text editor. However, once the page is written, how do we view our sweat and toil in the browser?

Open Notepad. This can be found in Start | Programs | Accessories | Notepad. This is a very basic and no frills text editor. The reason for using a simple program such as this is because a complex text editor or word processor, e.g. Microsoft Word, will add it’s own unwanted formatting codes to the file we produce. This file will then not be viewable in a web browser. Notepad does not add anything to the file except the text that we write.

Maximise the Notepad window by clicking the square button in the top right hand corner of the window, to enable easy viewing of the page.
[image: image2.png]Web Design - XHTML

Home
Products
Contact

Home

Your text goes here. Your text goes here.Your text goes here.Your text goes here. Your text goes here, Your
text goes here, Your text goes here.Your text goes here. Your text goes here. Your text goes here.Your text
goes here. Your text goes here.

Your text goes here. Your text goes here.Your text goes here.Your text goes here. Your text goes here. Your
text goes here. Your text goes here.Your text goes here. Your text goes here. Your text goes here.Your text
goes here. Your text goes here.

More text goes here. More text goes here. More text goes here. More text goes here, Mare text goes here. More
text goes here. More text goes here. More text goes here. More text goes here, More text goes here. More text
goes here. More text goes here.

More text goes here. More text goes here. More text goes here. More text goes here, Mare text goes here. More
text goes here. More text goes here. More text goes here. More text goes here, More text goes here. More text
goes here. More text goes here.

[image: image3.emf]

Maximise

Select Edit | Word wrap, to enable long lines of text to start new lines automatically when they reach the right hand side of the window.

[image: image4.emf]
Type your code!

When you have finished, or want to view your work so far, you must save your work first. Do this by choosing File | Save.

[image: image5.emf]
The Save As… dialogue box will appear, prompting you for a location and a file name.
[image: image6.emf]
Click the Save in ‘down arrow’ which will bring up the drop-down menu. This will enable you to specify the drive on which to save your work.

[image: image7.emf]
Select either the C: drive if you wish to save your work on the computer’s hard drive or select the A: drive if you wish to save your work on a floppy diskette.
[image: image8.emf]
Double click on Student folder if you are saving your work on the computer at class. If this folder does not exist you can create it. Another reason for creating a folder is if you are working on your own computer at home. You should create a folder to save your web pages on your hard drive. Call it ‘Web pages’. To create a new folder, click on the Create New Folder button, which sits on the toolbar near the top of the window.

[image: image9.emf]
A new folder entitled ‘New Folder’ will appear highlighted. Type the name you would like to give to the new folder and press the ‘Return’ key on the keyboard. Double click on the newly created folder or on the Student folder whichever is the case, in order to save your work in this folder.

[image: image10.emf]
Now choose the down arrow for the Save as type option and change the setting from Text Documents to All Files (*.*).

[image: image11.emf]
Now click in the File name field so the cursor appears after the word Untitled. Now type the filename for the web page, followed by .html.

Important: Do NOT use Spaces or Capitals.
[image: image12.emf]An example: mywebpage.html.

Now press the Save button.

The file is safely saved, and now ready to be loaded into the browser, i.e. Internet Explorer or Netscape Navigator. Open the browser by clicking on Start | Programs | Internet Explorer | Internet Explorer.

To load the file, click on File | Open.

[image: image13.emf]
This brings up the Open dialogue box.

[image: image14.emf]
Click on Browse… to bring up a further Open dialogue box.

Navigate to your file, e.g. C:\Student\mywebpage.html or A:\MyFolder\mywebpage.html, depending on where you saved it.

[image: image15.emf]
Click on the down arrow associated with Look in, so you can select the drive your file is saved on.

[image: image16.emf]
Then double click on the folder (if any), to get to the file, e.g. the Student folder if you saved it in here.

[image: image17.emf]
Your file will now be displayed. Click once on it to select it, then click Open.
[image: image18.emf]
Click on OK in the remaining dialogue box.

[image: image19.emf]
Congratulations! You have just created and displayed a web page. Have a break.
To make changes to the web page, revert back to Notepad. Change the HTML as necessary and click on File | Save. No dialogue box will appear since your file already has a file name. Switch to your browser and click on View | Refresh. This will load the changed file and display your updated page.

Warning: Creating and maintaining a web site can become very addictive!

--
XHTML & CSS

Course notes

Session 3

Simple formatting

Physical tags
...
Bold

<i>...</i>
Italic

<u>...</u>
Underline

The above tags are known as ‘physical’ tags, and therefore should never be used. Physical tags are concerned with presentation and appearance. Different browsers present web pages in different ways, so web designers cannot use physical formatting to control layout. It will cause web pages to break in some browsers.

The correct alternative is to use ‘logical’ tags. These are the only tags that should be used to create web pages. They do not describe appearance, but instead they describe the structure of the page. They indicate what type of object should appear on the page, but not how the object should appear. In this way, all logical tags will work with all browsers. All visitors will be able to view the page with no difficulties.

Logical tags
...
Strong

...

Emphasis

These tags are structural. They do not describe appearance, but rather indicate what the object is on the page. They can be used as much as needed.

Remember, all tags are written in lower case. They all go in between the open and close body tags.

Nesting

Nesting tags

All tags must be correctly nested. They must never overlap.

The following example shows the syntax of correctly nested tags:

<tag1><tag2><tag3>...</tag3></tag2></tag1>
The last tag to be opened must be the first one closed.

Another example using strong and em:

...

It is important that tags never overlap, as in the following example:

...

Draw a line connecting opening and closing tags together. The lines should never cross.

Headings

Heading levels

There are 6 heading levels available. They are written as follows:

<h1>...</h1>

<h2>...</h2>

<h3>...</h3>

<h4>...</h4>

<h5>...</h5>

<h6>...</h6>

They should only be used to create headings, and not used to make ordinary text bigger.

Not all browsers show headings as different sizes.

As they are logical tags, they are not to be thought of as larger and smaller headings.

Heading levels are levels of relative importance. H1 being the most important, should only be used once per page. The other levels can be used as many times as needed.

Levels cannot be skipped. If there are only two levels on a page, then h1 and h2 should be used. If there are three levels, then use h1, h2 and h3

Paragraphs

Paragraphs

Creating paragraphs is very simple:

<p>...</p>
All ordinary text should be enclosed between paragraph tags in order to created correctly formatted paragraphs.

Empty paragraphs demonstrate poor formatting and therefore should not be used as in the following examples:

<p></p>

<p> </p>

XHTML & CSS

Course notes

Session 4
Attributes and Values

Attributes and Values
Almost all tags can accept attributes and values. An attribute will modify the way in which the tag will work, making the tag more powerful. The value will determine exactly how the tag will be modified.

The syntax for attributes and values is as follows:

<tag attribute=“value”>...</tag>

Font
The font tag is written as follows:

...
However, on its own, it is useless. It requires attributes and values to make it more useful.

To change the size of the font, use the size attribute:

...
where n is a number between 1 and 7. The default font size is 3.

To change the typeface of the font, use the face attribute:

...
where xxx is the name of the typeface. The default typeface is Times New Roman.

It is recommended that the verdana typeface is used for web pages, and the generic sans-serif font family is declared at the end of the list:

...
In order to change the size and typeface simultaneously, two or more attribute and value sets can be combined, preceding each attribute with a space.

...

Additional tags

Empty tags
All tags appear in pairs. There is always a start tag and an end tag.

<tag>...</tag>

In between the opening and closing tags, text or other content will formatted according to those tags.

There are a few tags which do not enclose any content, and are therefore known as empty. They are written like this:

<tag></tag>
But for compatibility, these tags cannot be written in this way, so are modified in the following way:

<tag />

An empty tag is also known as a self-closing tag, as the opening tag contains the closing information. There is no separate closing tag.

Line Break

<hr />

Horizontal Rule

Sub/Superscript

To create text with superscript, 1st Jan 2000, use the sup tag.

1st Jan 2000
To create text with subscript, H2O, use the sub tag.

H₂O
Validation

XHTML Validation

The World Wide Web Consortium lays down very specific rules for XHTML syntax. It is essential that all web pages always comply with the standards of the W3C. In this way, it is guaranteed that all web pages will work successfully with all compliant browsers.

The W3C has an online validation tool that should be used to check all web pages for compliant syntax. It can be found at the following address:

http://validator.w3.org
Additional tags

What do these tags do?
<abbr>

<acronym>

<address>

<big>

<blockquote>

<center>

<cite>

<code>

<hr />

<ins>

<kbd>

<pre>

<q>

<s>

<small>

<strike>

XHTML & CSS

Course notes

Session 5
Colour

Colour
There are three primary colours; Red, Green and Blue. By mixing varying amounts of these colours, any colour imaginable can be created. The computer can generate up to 256 shades of each of the three primary colours. Simply tell the browser how much of each shade is required, by supplying a number between 0 and 255.

Hexadecimal
The number supplied cannot be in decimal (base 10):

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Instead, the hexadecimal (base 16) number system must be used:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f

To specify the colour, a two digit hexadecimal number must be supplied for each shade, in the order Red Green Blue.

rrggbb
where rr, gg and bb represent the two digit hexadecimal numbers.

Font
To change the colour of the font, use the following attribute with the font tag:

...

where rrggbb represents the RGB Hexadecimal Colour Triplet. Some example colours include:

000000
black

ffffff
white

2d2d2d
dark grey

b7b7b7
light grey

cc00cc
purple

eaea39
yellow

Background
To change the background colour of the page, add an attribute to the body tag. Remember, there can only be one pair of body tags per page, so don’t add another tag, simply modify the existing one.

<body bgcolor=“#rrggbb”>

--

XHTML & CSS

Course notes

Session 6

Attributes and Values

More tags with attributes and values
Most tags can accept various combinations of attributes and values.

<p>...</p>
<h1>...</h1>

<p align=“left | center | right”>...</p>

<h1 align=“left | center | right”>...</h1>

Even empty tags can accept attributes and values.

<hr />

<hr width=“25%” align=“center” />

Character Entities

Character Entities

These are not tags. They enable characters to be written in web pages, which would otherwise not be possible.

non-breaking space

©
copyright

™
trade mark

European letters

é

è

ñ

Other symbols

&
ampersand

<

less than

>

greater than

Use the non-breaking space to place to ‘glue’ two or more words together. Words with non-breaking spaces in between them will remain together, and not break apart over two lines.

Use the ampersand character entity when ever you want to use the & symbol on the page.

Lists

Unordered lists
These look like bulleted lists. They all begin and end with the ul tag. Each list item is created using the li tag.

Apple

Orange

Pear

Banana

Mango

Ordered lists
These look like numbered lists. They all begin and end with the ol tag. Each list item is created using the li tag.

Apple

Orange

Pear

Banana

Mango

Advanced Lists

Unordered lists
Unordered lists can accept the following attribute to change the style of the bullet:

<ul type=“circle | disc | square”>

Apple

Orange

Pear

Banana

Mango

Ordered lists
Ordered lists can accept the following attribute to change the style of the number:

<ol type=“1 | A | a | I | i”>

Apple

Orange

Pear

Banana

Mango

The starting value can also be changed:

<ol start=“n”>

Apple

Orange

Pear

Banana

Mango

where n is always a number, regardless of the type that has been set.

<ol type=“A” start=“5”>

Apple

Orange

Pear

Banana

Mango

Introductory XHTML tag list

	Tag
	Description

	<abbr>
	Defines an abbreviation

	<acronym>
	Defines an acronym

	<address>
	Defines an address element

	
	Defines bold text

	<big>
	Defines big text

	<blockquote>
	Defines a long quotation

	<body>
	Defines the body element

	

	Inserts a single line break

	<center>
	Defines centred text

	<cite>
	Defines a citation

	<code>
	Defines computer code text

	
	Defines deleted text

	<div>
	Defines a section in a document

	<dfn>
	Defines a definition term

	<dl>
	Defines a definition list

	<dt>
	Defines a definition term

	
	Defines emphasized text

	<h1> to <h6>
	Defines header 1 to header 6

	<head>
	Defines information about the document

	<hr />
	Defines a horizontal rule

	<html>
	Defines an html document

	<i>
	Defines italic text

	<ins>
	Defines inserted text

	<kbd>
	Defines keyboard text

	
	Defines a list item

	
	Defines an ordered list

	<p>
	Defines a paragraph

	<pre>
	Defines preformatted text

	<q>
	Defines a short quotation

	<s>
	Defines strikethrough text

	<small>
	Defines small text

	<strike>
	Defines strikethrough text

	
	Defines strong text

	<sub>
	Defines subscripted text

	<sup>
	Defines superscripted text

	<title>
	Defines the document title

	<tt>
	Defines teletype text

	<u>
	Defines underlined text

	
	Defines an unordered list

Nesting Lists

Create the following list
Food
· Fish

i. Cod

ii. Salmon

iii. Haddock

· Fruit

i. Apple

ii. Orange

iii. Pear

· Vegetables

i. Pea

ii. Bean

iii. Carrot

Pick an unusual colour and try to recreate it on a web page

--
XHTML & CSS

Course notes

Session 7

Anchors

Linking pages
The most important tag is the anchor tag:

<a>...

This tag should be placed on the web page that is to carry the link. For the tag to be useful, the href attribute must be used. The value must point to the destination page. The text enclosed between the open and close anchor tags will become the link text.

Click here
To link to another website, or a page on a website outside of your own, write the full domain name of the website (including ‘http://’ and the trailing ‘/’) or the full domain name and directory or page name, as the value to the href attribute.

Yahoo!

Time Out

To put an email link on the page, use the following:

Your email address

It is possible to link to a file that your visitors will be able to download.

Download this file
Don’t be tempted to create endless ‘pdf’ files (which require Adobe Acrobat Reader or similar software in order to view such files), as some computers may not have a suitable reader, or require the reader to be updated. It takes a long time to download pdf files – far longer than the time required to download a web page – and then once the file has downloaded, the reader software must be loaded, which takes additional time. Pdf files make access difficult for visitors who use screen readers.

Web sites often use pdf files for brochures, leaflets, catalogues, reports and other documents, and restaurant menus and shop price lists. Their argument is that it enables them to create documents with fancy formatting, layout, images, colours and fonts. However, this can very easily be done simply by creating a web page. All visitors will be able to access a logically formatted web page using CSS, and depending on the browser, will see colours, fonts, pictures and advanced layout.

Title attribute

The anchor tag also accepts the title attribute, which must not be confused with the title tag. This attribute displays advisory text, (a tool tip), which appears whenever the mouse hovers over the link. This is useful in displaying additional information to your visitors, and for people with screen readers.

News
Most tags will accept the title attribute. This is a very useful attribute, as it allows you to display additional information on your web page, without cluttering your web page. The information only appears when the mouse hovers over that particular element.

<p title=“Summary of paragraph”>...</p>

<h1 title=“Summary of page”>...</h1>

<em title=“Why is this text emphasised?”>...

<abbr title=“British Broadcasting Corporation”>BBC</abbr>

Named Anchors

Named anchor
The anchor tag allows a one page to be linked to another. However, using named anchors, allows a link to appear on a page which does not take the visitor to another page, but rather takes the visitor to another point on the same page.

First use the anchor tag to create a label on the page:

...

Then create a link somewhere else on the page, which will now jump to the label:

Go to the news

Here is an example that will take you to the top of the page.

<body>

...

Rest of page goes here...

...

Top

</body>

XHTML & CSS

Course notes

Session 8

Images

Pictures
Inline images are placed into web pages using the empty img tag.

There are two mandatory attributes to be used with this tag; src, which specifies the location and name of the picture, and alt, which provides alternative text in lieu of the picture.

The only types of pictures that can be used on web pages are those in ‘jpg’, ‘gif’ or ‘png’ format.

Optional attributes
There are several attributes that can be used with the img tag. They are listed below:

title=“Description of picture”

border=“n”
where n is a number in pixels representing the thickness of the border

align=“top | middle | bottom | left | right”

width=“n”
where n is a number in pixels representing the width of the picture
height=“n”
where n is a number in pixels representing the height of the picture
hspace=“n”
where n is a number in pixels representing horizontal space either side of the picture
vspace=“n”
where n is a number in pixels representing vertical space above and below the picture

Here is an example of them all together:

Background pictures
A picture can be used as a background image to a web page, by placing the image in the body:

<body background=“picture.png”>

--
Main code for making web design

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>XHTML & CSS</title>

</head>

<body>

Code for making your webdesign

</body>

</html>

XHTML & CSS

Course notes

Session 9

Tables

Tables
Tables are created using the table tag.

<table>
Tables are created row by row, beginning at the top of the table, and cell by cell, beginning from the left of the row.

<table border=“1”>
<tr>

<td>Apple</td>

<td>Pear</td>

<td>Orange</td>

</tr>

<tr>

<td>Mango</td>

<td>Lemon</td>

<td>Melon</td>

</tr>

</table>

The tr tag denotes a ‘table row’ and the td tag denotes ‘table data’. All rows must have the same number of td tags.

This will create the following table:
	Apple
	Pear
	Orange

	Mango
	Lemon
	Melon

The border attribute is measured in pixels. Try different values to see the effect.

Use the width attribute width=“n | %” to alter the width of either the entire table, or individual columns, where n is a number in pixels or use a percentage value:

<table width=“50%”>

or

<td width=“100”>

Use the bgcolor attribute to change the background colour of the cells, the row or the whole table:

<td bgcolor=“#rrggbb”>

The <th> tag, (table header) is used for column or row headings.

Colspan and Rowspan

To create tables where some cells occupy more space, use colspan or rowspan:

The following table is created using colspan:

	A

	B
	C

<table border=“1”>

<tr>

<td colspan=“2”>A</td>

</tr>

<tr>

<td>B</td>

<td>C</td>

</tr>

</table>

This works because cell A spans two columns. Try to create the following with rowspan:

	A
	C

	B
	

Now create this:

	A
	B
	C
	D

	L
	M
	E

	K
	
	F

	J
	I
	H
	G

Optional attributes
There are several attributes that can be used with the table, tr and td tags. They are listed below:

title=“Description of table”

height=“n”
where n is a number in pixels representing the height of the table

align=“left | center | right”

cellpadding=“n”
where n is a number in pixels representing the padding within a cell

cellspacing=“n”
where n is a number in pixels representing the spacing around a cell

background=“picture”
where picture is the name of a background picture
	Home

Products

Contact

Home
Welcome to the Home page of this site using tables/frames to divide up the page. This creates an easy and simple to use navigation system. It provides for a menu on the left – but it can equally be located on the right, top or bottom of the page. The main content appears in the larger section on the right of the table/frame.

	Home

Products

Contact

Products
Welcome to the Products page of this site using tables/frames to divide up the page. This creates an easy and simple to use navigation system. It provides for a menu on the left – but it can equally be located on the right, top or bottom of the page. The main content appears in the larger section on the right of the table/frame.

	Home

Products

Contact

Contact
Welcome to the Contact page of this site using tables/frames to divide up the page. This creates an easy and simple to use navigation system. It provides for a menu on the left – but it can equally be located on the right, top or bottom of the page. The main content appears in the larger section on the right of the table/frame.

Recreate the above three page mini-site as follows:

1. Using TABLES only, create three separate pages similar to the ones above, each page linked to the other two by a menu on the left. Fill the right hand side with a paragraph or two of text.

2. Using FRAMES only, create as many pages as required to reproduce the three page site as above. Again, the menu on the left hand side must contain links to the other two pages.

	
	
	Link

X

1. Using nested TABLES, create the table shown in the left hand diagram above.

2. Using TABLES, create the table shown in the middle diagram above.

3. Using FRAMES, create the pages shown in the middle and right above.

4. For the example on the right, place a LINK in the frame shown, such that when it is clicked, a new page will open in the frame marked X.

XHTML & CSS

Course notes

Session 10
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Enter the title text of your XHTML web page here</title>

</head>

</html>

Frames

Frames
Frames allow you to load two or more web pages into one browser window. In the example below, you will create two normal transitional pages, page1.html and page2.html, and a frameset page, page0.html, which is based on the frameset template.

page0.html

(frameset)

	page1.html

(transitional)

	page2.html

(transitional)

To make this work, edit your frameset template, by putting the following after </head> but before </html>.

<frameset cols=“50%, 50%”>

<frame src=“page1.html” />

<frame src=“page2.html” />

</frameset>

Call it page0.html, and view this page in your browser.

Try changing cols to rows.

The 50%, 50% value tells the browser that you want TWO cols or rows, and that they should be equal in size. Try changing the percentage values.

Rather than percentages, the values for the width or height of the frames can be in pixels.

If you want three equal frames, try using 33%, 33%, 33%, and use three <frame /> tags, for three pages:

<frameset rows=“33%, 33%, 33%”>

<frame src=“page1.html” />

<frame src=“page2.html” />

<frame src=“page3.html” />

</frameset>

Nesting
Frames can be nested as shown below, in order to create the following layout:

	page1.html

	page2.html

	page3.html
	

<frameset cols=“50%, 50%”>

<frameset rows=“50%, 50%”>

<frame src=“page1.html” />

<frame src=“page3.html” />

</frameset>

<frame src=“page2.html” />

</frameset>

Name and Targets
Individual frames can be named. This allows other tags to identify them, such as the anchor tag.

<frameset cols=“50%, 50%”>

<frame src=“page1.html” id=“left” />

<frame src=“page2.html” id=“right” />

</frameset>

In this example, the frame that loads page1.html is called ‘left’, and the frame that loads page2.html is called ‘right’. The names can be anything, but each id must be unique.

Now if page1.html contains an anchor tag (a link), then when the link is clicked, the new page will open in the same left hand frame. If it is preferred that the link opens up the new page in the right hand frame, then the anchor tag on page1.html must be modified as follows:

Click here
The target attribute forces the link to open page3.html in the frame that is named right.

Reserved names
There are four reserved names that cannot be used as values with the id attribute. However they can be used as values with the target attribute. These are:

_self

_parent

_top

_blank
An example would be target=“_blank”.

_self
Opens link in the same frame from which it was called

_parent
With nested frames, opens link in the parent frame

_top

Destroys all frames, opens link in full browser window

_blank
Opens link in a brand new browser window (or tab)

Optional attributes
There are several attributes that can be used with the frame tag. They are listed below:

frameborder=“0 | 1”
which switches the border on or off

scrolling=“yes | no | auto” which switches the scrollbar on or off

noresize=“noresize” which prevents visitors from adjusting the size of the frames

XHTML & CSS

Course notes

Session 13

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<title>Enter the title text of your XHTML web page here</title>

</head>

<body>

<!-- Read the STRICT rules before creating a web page -->

</body>

</html>

XHTML Tag List

	Start tag
	Purpose
	Block/Char
	DTD

	
	
	
	

	Basic Tags
	
	
	

	<!DOCTYPE>
	Defines the document type
	
	STF

	<html>
	Defines an html document
	
	STF

	<body>
	Defines the body element
	
	STF

	<h1> to <h6>
	Defines header 1 to header 6
	B
	STF

	<p>
	Defines a paragraph
	B
	STF

	

	Inserts a single line break
	C
	STF

	<hr />
	Defines a horizontal rule
	B
	STF

	<!--...-->
	Defines a comment
	
	STF

	
	
	
	

	Char Format
	
	
	

	
	Defines bold text
	C
	STF

	
	Deprecated. Defines text font, size, and colour
	C
	TF

	<i>
	Defines italic text
	C
	STF

	
	Defines emphasized text
	C
	STF

	<big>
	Defines big text
	C
	STF

	
	Defines strong text
	C
	STF

	<small>
	Defines small text
	C
	STF

	<sup>
	Defines superscripted text
	C
	STF

	<sub>
	Defines subscripted text
	C
	STF

	<bdo>
	Defines the direction of text display
	C
	STF

	<u>
	Deprecated. Defines underlined text
	C
	TF

	
	
	
	

	Output
	
	
	

	<pre>
	Defines preformatted text
	B
	STF

	<code>
	Defines computer code text
	C
	STF

	<tt>
	Defines teletype text
	C
	STF

	<kbd>
	Defines keyboard text
	C
	STF

	<var>
	Defines a variable
	C
	STF

	<dfn>
	Defines a definition term
	C
	STF

	<samp>
	Defines sample computer code
	C
	STF

	<xmp>
	Deprecated. Defines preformatted text
	
	

	
	
	
	

	Blocks
	
	
	

	<acronym>
	Defines an acronym
	C
	STF

	<abbr>
	Defines an abbreviation
	C
	STF

	<address>
	Defines an address element
	B
	STF

	<blockquote>
	Defines a long quotation
	B
	STF

	<center>
	Deprecated. Defines centered text
	C
	TF

	<q>
	Defines a short quotation
	C
	STF

	<cite>
	Defines a citation
	C
	STF

	<ins>
	Defines inserted text
	B/C
	STF

	
	Defines deleted text
	B/C
	STF

	<s>
	Deprecated. Defines strikethrough text
	B/C
	TF

	<strike>
	Deprecated. Defines strikethrough text
	B/C
	TF

	
	
	
	

	Links
	
	
	

	<a>
	Defines an anchor
	C
	STF

	<link />
	Defines a resource reference
	
	STF

	
	
	
	

	Frames
	
	
	

	<frame />
	Defines a sub window (a frame)
	FRAMESET
	F

	<frameset>
	Defines a set of frames
	B
	F

	<noframes>
	Defines a noframe section
	B
	TF

	<iframe>
	Defines an inline sub window (frame)
	B/C
	TF

	
	
	
	

	Input
	
	
	

	<form>
	Defines a form
	B
	STF

	<input>
	Defines an input field
	FORM
	STF

	<textarea>
	Defines a text area
	FORM
	STF

	<button>
	Defines a push button
	FORM
	STF

	<select>
	Defines a selectable list
	FORM
	STF

	<optgroup>
	Defines an option group
	FORM
	STF

	<option>
	Defines an item in a list box
	FORM
	STF

	<label>
	Defines a label for a form control
	FORM
	STF

	<fieldset>
	Defines a fieldset
	FORM
	STF

	<legend>
	Defines a title in a fieldset
	FORM
	STF

	<isindex>
	Deprecated. Defines a single-line input field
	FORM
	TF

	
	
	
	

	Lists
	
	
	

	
	Defines an unordered list
	B
	STF

	
	Defines an ordered list
	B
	STF

	
	Defines a list item
	LIST
	STF

	<dir>
	Deprecated. Defines a directory list
	LIST
	TF

	<dl>
	Defines a definition list
	B
	STF

	<dt>
	Defines a definition term
	LIST
	STF

	<dd>
	Defines a definition description
	LIST
	STF

	<menu>
	Deprecated. Defines a menu list
	B
	TF

	
	
	
	

	Images
	
	
	

	
	Defines an image
	C
	STF

	<map>
	Defines an image map
	C
	STF

	<area />
	Defines an area inside an image map
	MAP
	STF

	
	
	
	

	Tables
	
	
	

	<table>
	Defines a table
	B
	STF

	<caption>
	Defines a table caption
	TABLE
	STF

	<th>
	Defines a table header
	TABLE
	STF

	<tr>
	Defines a table row
	TABLE
	STF

	<td>
	Defines a table cell
	TABLE
	STF

	<thead>
	Defines a table header
	TABLE
	STF

	<tbody>
	Defines a table body
	TABLE
	STF

	<tfoot>
	Defines a table footer
	TABLE
	STF

	<col>
	Defines attributes for table columns
	TABLE
	STF

	<colgroup>
	Defines groups of table columns
	TABLE
	STF

	
	
	
	

	Styles
	
	
	

	<style>
	Defines a style definition
	
	STF

	<div>
	Defines a section in a document
	B
	STF

	
	Defines a section in a document
	C
	STF

	
	
	
	

	Meta Info
	
	
	

	<head>
	Defines information about the document
	
	STF

	<title>
	Defines the document title
	
	STF

	<meta>
	Defines meta information
	
	STF

	<base>
	Defines a base URL for all the links in a page
	
	STF

	<basefont>
	Deprecated. Defines a base font
	
	TF

	
	
	
	

	Programming
	
	
	

	<script>
	Defines a script
	B/C
	STF

	<noscript>
	Defines a noscript section
	B
	STF

	<applet>
	Deprecated. Defines an applet
	
	TF

	<object>
	Defines an embedded object
	C
	STF

	<param>
	Defines a parameter for an object
	
	STF

[image: image1.png]330000 333300 336600 339900 33CCOD 33FFO0 66FFO0 66CCOD 669900 666600 663300 660000 FFOO0D FF3300 FF6600 FF9900 FFCCOO FFFFO0

330033 333333 336633 339933 33CC33 33FF33 66FF33 66CC33 669933 666633 663333 660033 FFO033 FF3333 FF6633 FF9933 FFCC33 FFFF33

330066 333366 336666 339966 33CCE6 33FF66 66FF66 G6CCEE 669966 666666 663366 660066 FFOOGE FF3366 FF6666 FF9966 FFCCE6 FFFF6E

330095 333399 336699 339999 33CC99 33FFI9 66FF99 66CCIS 669999 666699 663399 660099 FFOO99 FF3399 FF6699 FF9999 FFCCI9 FFFF99

3300CC 3333CC 3366CC 3399CC 33CCCC 33FFCC 66FFCC G6CCCC 6699CC 6666CC 6633CC 6600CC FFOOCC FF33CC FFE6CC FF99CC FFCCCC FFFFCC

3300FF 3333FF 3366FF 3399FF 33CCFF 33FFFF 66FFFF 66CCFF 6699FF 6666FF 6633FF G600FF FFOOFF FF33FF FF66FF FF99FF FFCCFF FFFFFF

ODOOFF D033FF DOGEFF 009SFF OOCCFF DOFFFF S9FFFF S9CCFF 9999FF 9966FF 9933FF 9900FF CCOOFF CC33FF CCEEFF CCI9FF CCCCFF CCFFFF

0D00CC D033CC DOGECC 0D9SCC DOCCCC DOFFCC S9FFCC 99CCCC 9999CC 9966CC 9933CC 9900CC CCDACE CC3ICC CCEECC CCITCC CCCCCE CCFFCC

000095 003399 006639 009999 0OCCSS DOFF99 S9FF99 99CCIS 999999 996699 993399 990099 CCOI9 CC33T9 CCEE9S CCIIIT CCCCIT CCFFI

000066 003366 006666 009966 DOCCES DOFF 66 S9FF 66 99CCE S 999966 996666 993366 990066 CCDOGE CC33 66 CCEEEE CCIIEE CCCCHE CCFFEE

000033 003333 006633 009933 DOCC33 DOFF33 S9FF33 99CC33 999933 996633 993333 990033 CCDO33 CC3333 CCEE3F CCITI3 COCCI3 CCFF33

000000 003300 006600 009300 0OCCOD DOFFOD SSFFOQ 99CCOD 99900 996600 993300 90000 CCOODD CC3300 CCEE0D CCI90D CCCCOA CCFFOD

These are the grays:

000000 333333 666666 999999 CCCCCC FFFFFF

These are the closest (more or less) to the 16 basic Windows colors

000000 D000 009900 009999 90000 590099 999900 CCCCCC 399999 DODOFF OOFFO OOFFFF FFODOD FFOOFF FFFFO0 FFFFFF

XHTML Strict

Strict
XHTML is a stricter and cleaner version of HTML

XHTML is HTML defined as an XML application

XHTML Strict is a W3C Recommendation

All web pages are created using XHTML tags. All tags look like this:

<element>...</element>

All XHTML tags appear in pairs except for self-closing (empty) tags, which have a space and trailing forward slash after the element:

<element />
All XHTML tags and attributes are written in lower case, never with capital letters.

All attributes must have at least one value. They cannot be minimised.

All values must be quoted.

The ‘id’ attribute replaces the ‘name’ attribute.

All XHTML tags must be correctly nested.

All CHARACTER level tags and CHARACTER DATA (CDATA) must be nested within a BLOCK level tag. Block level tags can NEVER be nested within character level tags. Most block level tags cannot be nested within other block level tags.

Deprecated elements must not be used in XHTML Strict.

XHTML Strict does NOT allow the use of ‘Physical’ or ‘Presentational’ tags and attributes. Instead, use only ‘Logical’ or ‘Structural’ tags to create clean, uncluttered markup, and style it using Cascading Style Sheets.

XHTML & CSS

Course notes

Session 12

Cascading Style Sheets
Introduction

Hyper Text Markup Language is not supposed to represent page formatting or layout. This is not a failing of the technology; this is how it has been designed. However, people tend to think visually and use HTML as a visual design environment. Using HTML for physical formatting can lead to problems when it comes to how pages appear on different machines and in different browsers. It is very difficult to design work logically since learning ‘desk top publishing’ or ‘graphic design’ gives you great creative freedom to layout the page as you wish. When designing pages for the web, it is important to think ‘organisationally’, so the structure of the page is defined. It should then be left up to the browser to render the page physically.

Many people often misuse tables, frames and images to control layout. This can prove unsatisfactory in the long term. A better solution is to use Cascading Style Sheets. This gives designers more control over layout. Although relatively new, they are being supported by more and more browsers. Both Netscape Navigator and Microsoft Internet Explorer fall short in some areas of Cascading Style Sheets Level 1 specification, but Opera provides full compliance. This however should not deter you from using CSS. With time, it will be fully implemented by all browsers, so designing web pages can begin moving away from relying on tables and towards style sheets. The newest specification is CSS2, which provides expanded media possibilities for web pages. However, it is not supported by many browsers yet. What follows is how to implement the use of CSS1 into your web pages to help control physical layout – given that you have used HTML correctly for logical and organisational layout.

Syntax

Styles have no meaning on their own. They must be bound to an element. The whole purpose of styles is to create a presentation for a particular element. The following is the syntax for binding an element to a style; it consists of an element, followed by a property then colon and its associated style information within curly brackets. Multiple properties are separated by semi-colons.

element
{property1: style specification; property2: style specification}

As an example, to bind a style rule to the <h1> element so that it is displayed in 28-point Impact font, the following rule would be used:

h1

{font-family:
Impact;
font-size:
28pt}

Styles are not only useful for formatting a document, but also for maintaining a consistent look across all pages of a site. Instead of having to individually set the characteristics of each and every page, a general style can be set up which will apply to all pages. To achieve this, an external style sheet is imported or embedded into the current web page. If some rules are required only for certain aspects of one particular page, then inline styles can be included locally.

Cascading Style Sheets
Adding Style to a web page

Style information can be included in a web page in one of three ways:

· Use an outside style sheet and either import it or link to it.

· Embed a document-wide style in the <head> element of the document.

· Provide an inline style exactly where the style needs to be applied.

Each has their advantages and disadvantages.

External style sheets can set a style for many documents with one style sheet, but require extra download time for the style sheet, which may delay page rendering.

Document-wide style sheets can control style for a document in one place without additional download time but it is necessary to reapply the style for other documents.

Inline styles can control style down to a single character instance and can override external or document styles. The major disadvantages of this however are that it is necessary to reapply the style information throughout the document and outside documents, and that inline styles are bound too closely to HTML – and so are difficult to update.

In general, it is better to use external style sheets. Classes and IDs should be used to control certain pages or elements. Document-wide and inline styles can then be used as third and fourth options respectively, when it is necessary to apply specific styles to certain pages, elements or characters.

Linking to a Style Sheet

An external style sheet is simply a plain text file containing the style specifications for HTML tags or classes. This file should be created in Notepad on a PC or Simpletext on a Macintosh. To indicate to the browser that it is a Cascading Style Sheet, the file should be given the extension .css.

The HTML file that uses this style sheet should reference it by using the <link /> tag which is placed within the <head> element of the document. The <link /> tag has a ‘relationship’ attribute which specifies just what is being linked. The following is an example of the

<link /> tag being used, to link a file called ‘mystyle.css’.

<head>

<title>Style Sheet Linking</title>

<link rel=”stylesheet” href=”mystyle.css” media=”all” type=”text/css” />

</head>

The HREF attribute indicates the URL of the style sheet. The MEDIA attribute is used to indicate which media the style should apply to. So the designer can define one style for computer screens, one for print and perhaps one for personal digital assistants. To do this, the HEAD element would then contain more than one LINK tag, each specifying a different style sheet and MEDIA value. Alternatively, if the style applies to many different media, then the MEDIA attribute can take more than one comma separated value, eg. media=“screen, print”. Finally, the TYPE attribute sets the MIME type to text/css, to indicate that this is a Cascading Style Sheet in text form as opposed to any other type of style sheet.

Embedding Style Information

To create a document-wide style, rules can be embedded into the current page. This is achieved with the <style> and </style> tags which again are placed within the <head>. Not all browsers understand style information, so to avoid problems, the actual rules are commented out using <!-- -->, so that they are not misinterpreted or displayed on screen. The following is an example of embedding style information.

<head>

<title>Style Sheet Embedding</title>

<style type=”text/css” media=”print”>

<!--

Style information follows…

-->

</style>

</head>

Importing a style into a document is another way to use a document-wide style, but as yet it is not widely supported by many browsers. The syntax is @import followed by the URL of the sheet. This must be included within the <style> element as above. An example follows:

<head>

<title>Style Sheet Importing</title>

<style type=”text/css” media=”screen”>

<!--

@import “docstyle.css”;

Local style information can be placed here to override import…

-->

</style>

</head>

Inline Styles

The simplest way to add style information is to add style information as an attribute to a particular element. This is shown in the next example.

<h1 style=”font-size: 48pt;
color: #00ff00”>Inline Style</h1>

The style information does not need to be hidden from browsers that are not style sheet aware, since browsers will ignore attributes that they don’t understand. As discussed earlier, a better method is to use classes and IDs, as they are easier to maintain.

To provide style information for only a few words or even letters, the and tag pair can be used.

<p>Ordinary text, special text, ordinary text again.</p>

Cascading Style Sheets
CSS units of length and colour and files are as follows:

Absolute: in, cm, mm, pt (1/72in), pc (12pt)
Relative: em (font height), ex (‘x’ height), px (pixel), %, number
Colour: #rrggbb, #rgb, rgb(R, G, B), rgb(R%, G%, B%)
URL: url(“filename”)
Cascading Style Sheets
Style Sheet Properties

Font

	font-family

	family-name, generic-family

	font-size

	xx-small, x-small, small, medium, large, x-large, xx-large, smaller, larger, length, %

	font-style

	normal, italic, oblique

	font-weight
	100, 200, 300, 400, 500, 600, 700, 800, 900, bold, bolder, light, lighter, normal

	font-variant
	normal, small-caps

	font
	Comprehensive property for all or specific font properties, font-size/line-height

Cascading Style Sheets
Style Sheet Properties

Text

	color
	rgb

	letter-spacing
	normal, length

	word-spacing
	normal, length

	text-indent
	length, %

	line-height
	normal, number, length, %

	text-align
	left, right, center, justify

	text-decoration
	blink, line-through, underline, overline, none

	text-transform
	capitalize, uppercase, lowercase, none

	white-space
	normal, pre, nowrap

	direction
	ltr, rtl

XHTML & CSS

Course notes

Session 13
Cascading Style Sheets
Style Sheet Properties

Background

	background-color
	rgb, transparent

	background-image
	url(“imagename”), none

	background-repeat
	repeat, repeat-x, repeat-y, no-repeat

	background-position
	top, center, bottom, left, center, right, length, %

	background-attachment
	scroll, fixed

	background
	Comprehensive property for all or specific background properties

Cascading Style Sheets
Classes and Ids

The Class and ID attributes allow a particular style to be applied to say only one occurrence of the <h1> element or even to only a particular occurrence of the <h1> element. These attributes name or label elements so that they can be referenced later.

The syntax used to describe an ID attribute is as follows:

#IDAttribute
{style specification}

The following is an example of the ID attribute being used.

#SecondParagraph

{background:

#00FF00}

This will cause the appropriate element with the ID attribute to have a green background, as follows:

<p id=”SecondParagraph”>This is the second paragraph of text</p>

This is useful for applying styles to particular elements such as the second paragraph. Each ID value must be unique. So how do you apply such styles to some occurrences of elements but not others without keeping track of endless lists of ID values? The answer is to use the CLASS attribute. CLASS values do not have to be unique. Many elements, even if not of the same type, can be members of the same class.

The syntax used to describe a class attribute is as follows:

.ClassAttribute
{style specification}

The following is an example of the CLASS attribute being used:

.important
{background:
#00FFFF}

All elements which have the CLASS attribute set to important will have a yellow background as follows:

<p class=”important”>This might be the third paragraph</p>

Cascading Style Sheets
Style Sheet Properties

Border

	border-style
	dotted, dashed, solid, double, groove, ridge, inset, outset, hidden, none

	border-top-style
	as above

	border-left-style
	as above

	border-right-style
	as above

	border-bottom-style
	as above

	border-color
	rgb

	border-top-color
	as above

	border-left-color
	as above

	border-right-color
	as above

	border-bottom-color
	as above

	border-width
	thin, medium, thick, length

	border-top-width
	as above

	border-left-width
	as above

	border-right-width
	as above

	border-bottom-width
	as above

	border-top
	Comprehensive property for all or specific border properties

	border-left
	Comprehensive property for all or specific border properties

	border-right
	Comprehensive property for all or specific border properties

	border-bottom
	Comprehensive property for all or specific border properties

	border
	Comprehensive property for all or specific border properties

Cascading Style Sheets
Style Sheet Properties

Margin

	margin-top
	auto, length, %

	margin-left
	auto, length, %

	margin-right
	auto, length, %

	margin-bottom
	auto, length, %

	margin
	Comprehensive property for all or specific margin properties

XHTML & CSS

Course notes

Session 14
Cascading Style Sheets
Style Sheet Properties

Padding

	padding-top
	length, %

	padding-left
	length, %

	padding-right
	length, %

	padding-bottom
	length, %

	padding
	Comprehensive property for all or specific padding properties

Cascading Style Sheets
Style Sheet Properties

Dimension

	width
	auto, length, %

	height
	auto, length, %

	min-width
	length, %

	max-width
	none, length, %

	min-height
	length, %

	max-height
	none, length, %

Cascading Style Sheets
Style Sheet Properties

Positioning

	position
	static, relative, absolute, fixed

	top
	auto, length, %

	left
	auto, length, %

	right
	auto, length, %

	bottom
	auto, length, %

	overflow
	visible, hidden, scroll, auto

	clip
	rect(length, length, length, length), auto

	vertical-align
	baseline, sub, super, top, text-top, middle, bottom, text-bottom, length, %

	z-index
	auto, number

Cascading Style Sheets
Style Sheet Properties

Classification

	float
	left, right, none

	clear
	left, right, both, none

	display
	inline, block, list-item, run-in, compact, marker, table, inline-table, table-row-group, table-header-group, table-footer-group, table-row, table-column-group, table-column, table-cell, table-caption, none

	visibility
	visible, hidden, collapse

	cursor
	url, auto, crosshair, default, pointer, move, e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize, text, wait, help

[image: image20.png]0

- Shetand
Tetands

North
Sea

Zone 1

Liversoot
England
Wales

cansir condon

-

Engish Channe!
France

XHTML & CSS

Course notes

Session 15
Cascading Style Sheets
Style Sheet Properties

Pseudo-classes

	a:link
	text-decoration: none

	a:hover
	text-decoration: underline; color: #ff0000

	a:active
	text-decoration: underline overline; color: #00ff00

	a:visited
	text-decoration: line-through

Cascading Style Sheets
Style Sheet Properties

Pseudo-elements

	:first-letter
	

	:first-line
	

	:before
	

	:after
	

Cascading Style Sheets
Style Sheet Properties

List

	list-style-type
	disc, circle, square, decimal, decimal-leading-zero, lower-roman, upper-roman, lower-alpha, upper-alpha, lower-greek, lower-latin, upper-latin, hebrew, armenian, georgian, cjk-ideographic, hiragana, katakana, hiragana-iroha, katakana-iroha, none

	list-style-image
	url, none

	list-style-position
	inside, outside

	list-style
	Comprehensive property for all or specific list properties

Cascading Style Sheets
Style Sheet Properties

Table

	table-layout
	auto, fixed

	border-collapse
	collapse, separate

	border-spacing
	length length

	caption-side
	top, bottom, left, right

	empty-cells
	show, hide

CSS Two Columns

Homework Solution

you can see page 1 for full of this text
The following is a possible solution for the Two Column design using CSS
div.container

{

width:100%;

margin:0px;

border:1px solid #999999;

line-height:130%;

font-family: verdana;

font-size: 80%;

}

div.header,div.footer

{

padding:0.5em;

color:#ffffff;

background-color:#999999;

clear:left;

}

h1.header

{

padding:0;

margin:0;

font-size: 150%;

}

div.left

{

float:left;

width:160px;

margin:0;

padding:1em;

}

div.content

{

margin-left:190px;

border-left:1px solid #999999;

padding:1em;

}

a:link

{

text-decoration: none;

}

a:hover

{

text-decoration:underline;

}

Save this Cascading Stylesheet as:

style.css

<?xml version= “1.0” encoding=“ISO-8859-1”?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html xmlns=“http://www.w3.org/1999/xhtml” xml:lang=“en” lang=“en”>

<head>

<title>Enter the title of your XHTML document here</title>

<link rel=“stylesheet” href=“style.css” media=“all” type=“text/css” />

</head>

<body>

<div class=“container”>

<div class=“header”>

<h1 class=“header”>Web Design - XHTML</h1>

</div>

<div class=“left”>

<p>

Home

Products

Contact

</p>

</div>

XHTML & CSS

Course notes

Session 16

Image Maps

Image Map syntax

Image Maps are used to make links out of pictures. However, what is special about Image Maps is that it is possible to make one part of a picture link to one page, another part of the same picture link to another page, while other parts of the same picture do not link to anything at all.

The following represents how to select an area of an image, such that it will link to a page called page1.html.

<map id=“map1”>

<area shape=“rect” cords=“x1, y1, x2, y2” href=“page1.html alt=“Description of Image” title=“Description of Image” />

</map>

The shape of the area is a ‘rectangle’ and the dimensions of the rectangle are given by the coordinates x1, y1, x2, y2, where x1, y1, represent the top left corner of the rectangle, and x2, y2, represent the bottom right corner of the rectangle. The <map> tag contains the id attribute with a uniquely identifying value.

The href attribute should point to a destination page. If you do not want the defined area to be clickable (i.e. it should not point to a page), then use the nohref attribute instead:

nohref=“nohref”

To associate the map to the image, use the tag as follows, adding the usemap attribute with the same value as the id attribute from the <map> tag:

There are two other shapes that the <area> tag can take:

shape=“circle” cords=“x, y, r”

where x and y represent the centre of the circle and r represents the radius, and

shape=“poly” cords=“x1, y1, x2, y2, x3, y3,..., x1, y1,”

where each x and y pair represent the coordinates of points on a polygon, in order. The start and end coordinates should be the same, to join up the polygon.

An example image map

<map name=“uk”>

<area shape=“circle” coords=“290, 365, 60” href=“wales.html” alt=“Wales” title=“Wales” />

<area shape=“rect” coords=“230, 230, 470, 430” href=“england.html” alt=“England” title=“England” />

<area shape=“rect” coords=“175, 190, 350, 20” href=“scotland.html” alt=“Scotland” title=“Scotland” />

</map>

The image used for this example is available for download from this site.

[image: image21.png]The name of your website - header

‘This area tradifionally
contains internal links
to other pages within
your website

Tnternal link 1
Tnternal link 2
Tnternal link 3
Tnternal link 4
Tnternal link 5

This i the main
navigation area
Keep it clean, clear
and unchuttered.
Your visitors should
be able to find this
area quickly and
casily

Subheading

Lorem ipsum dolor sit amet, consectetuer adipiscing elf, sed diam
nonummy nibh evismod fincidunt ut laoreet dolore magna aliquam erat
wolutpat. Ut wisi enim ad minim veniam, quis nostrud exerci fation
ullameorper suscipit lobortis nisl ut aliquip ex ea commodo consequat.
Dis autem vel evm iriure dolor in hendrerit in vulputate velt esse
molestie consecqua, vel ilum dolore eu fevgiat nulla facilsis af vero eros
et accumsan et iusto odio dignissim qui blandit praesent Inptatum zzzil
delenit augne duis dolore te feugait milla facilsi

Ut wisi enim ad minim veniam, quis nostrud exerci fation ullamcorper
suscipit lobortis nisl ut aliquip e e commodo consequat. Duis autem vel
evmisiure dolor in hendrerit in wiputate velt esse molestie consequat,
welillam dolore en feugiat milla facilsis at vero eros cf accumsan et usto
odio dignissim qui blandit pracsent huptafum zzil delenit augue duis
dolore te feugait nila Facilisi. Lorem ipsum dolor sit amet, consectetuer
adipiseing elt, sed diam nonummy nibh evismod fincidunt ut laoreet
dolore magna aliquam erat volutpa.

Put external links
here, links to other
websites and/or
advertisements

External link 1
External link 2
Esternal link 3

Advertisement 1
Advertisement 2

{This area contains
more text than

Legal and copyright © information, small print - Footer

[image: image22.png]

CSS Four Columns

Four column design using CSS
It was once thought impossible. Try to design the following page using CSS.
	Header

	Internal links
	Column one
Content…
	Column two
Content…
	External links

	Footer

XHTML & CSS

Course notes

Session 17

Cascading Style Sheets
Selectors and shortcuts

Grouping

When several selectors share the same declarations, they may be grouped into a comma-separated list.

In this example, we condense three rules with identical declarations into one. Thus,

h1 { font-family: sans-serif }

h2 { font-family: sans-serif }

h3 { font-family: sans-serif }

is equivalent to:

h1, h2, h3 { font-family: sans-serif }

Matching attributes and attribute values

Attribute selectors may match in the following ways ways:

[att]

Match when the element sets the "att" attribute, whatever the value of the attribute.

[att=val]

Match when the element's "att" attribute value is exactly "val".

For example, the following attribute selector matches all H1 elements that specify the "title" attribute, whatever its value:

h1[title] {color: blue;}

In the following example, the selector matches all SPAN elements whose "class" attribute has exactly the value "example":

span[class=“example”] {color: blue;}

Multiple attribute selectors can be used to refer to several attributes of an element, or even several times the same attribute.

Here, the selector matches all SPAN elements whose "hello" attribute has exactly the value "Cleveland" and whose "goodbye" attribute has exactly the value "Columbus":

span[hello=“Cleveland”][goodbye=“Columbus”] {color: blue;}

Descendant selectors

At times, we may want selectors to match an element that is the descendant of another element in the document tree (e.g., "Match those EM elements that are nested within an H1 element"). Descendant selectors express such a relationship in a pattern. A descendant selector is made up of two or more selectors separated by a space. A descendant selector of the form "A B" matches when an element B is an arbitrary descendant of some ancestor element A.

For example, consider the following rules:

h1 {color: red}

em {color: red}

Although the intention of these rules is to add emphasis to text by changing its color, the effect will be lost in a case such as:

<h1>This headline is very important</h1>

We address this case by supplementing the previous rules with a rule that sets the text colour to blue whenever an EM occurs anywhere within an H1:

h1 {color: red}

em {color: red}

h1 em {color: blue}

The third rule will match the EM in the following fragment:

<h1>This headline

is very important</h1>

The following selector:

div * p

matches a P element that is a grandchild or later descendant of a DIV element. Note the space on either side of the "*".

The selector in the following rule, which combines descendant and attribute selectors, matches any element that (1) has the "href" attribute set and (2) is inside a P that is itself inside a DIV:

div p * [href]

Child selectors

A child selector matches when an element is the child of some element. A child selector is made up of two or more selectors separated by ">".

The following rule sets the style of all P elements that are children of BODY:

body > p {line-height: 1.3}

The following example combines descendant selectors and child selectors:

div ol > li p

It matches a P element that is a descendant of an LI; the LI element must be the child of an OL element; the OL element must be a descendant of a DIV.

Adjacent sibling selectors

Adjacent sibling selectors have the following syntax: E1 + E2, where E2 is the subject of the selector. The selector matches if E1 and E2 share the same parent in the document tree and E1 immediately precedes E2.

In some contexts, adjacent elements generate formatting objects whose presentation is handled automatically (e.g., collapsing vertical margins between adjacent boxes). The "+" selector allows authors to specify additional style to adjacent elements.

Thus, the following rule states that when a P element immediately follows an H1 element, it should not be indented:

h1 + p {text-indent: 0}

The next example reduces the vertical space separating an H1 and an H2 that immediately follows it:

h1 + h2 {margin-top: -5mm}

The following rule is similar to the one in the previous example, except that it adds an attribute selector. Thus, special formatting only occurs when H1 has class=“opener":

h1.opener + h2 {margin-top: -5mm}

Cascading Style Sheets
Specificity

Specificity
If the selectors are the same then the latest one will always take precedence. For example, if you had:

p { color: red; }

p { color: blue; }
p elements would be coloured blue because that rule came last.

However, you won't usually have identical selectors with conflicting declarations on purpose (because there's not much point). Conflicts quite legitimately come up, however, when you have nested selectors. In the following example:

div p { color: red; }

p { color: blue; }

It might seem that p elements within a div element would be coloured blue, seeing as a rule to colour p elements blue comes last, but they would actually be coloured red due to the specificity of the first selector. Basically, the more specific a selector, the more preference it will be given when it comes to conflicting styles.

The actual specificity of a group of nested selectors takes some calculating. Basically, you give every id selector ("#whatever") a value of 100, every class selector (".whatever") a value of 10 and every HTML selector ("whatever") a value of 1. Then you add them all up and hey presto, you have the specificity value.

· p has a specificity of 1 (1 HTML selector)

· div p has a specificity of 2 (2 HTML selectors; 1+1)

· .tree has a specificity of 10 (1 class selector)

· div p.tree has a specificity of 12 (2 HTML selectors and a class selector; 1+1+10)

· #baobab has a specificity of 100 (1 id selector)

· body #content .alternative p has a specificity of 112 (HTML selector, id selector, class selector, HTML selector; 1+100+10+1)

So if all of these examples were used, div p.tree (with a specificity of 12) would win out over div p (with a specificity of 2) and body #content .alternative p would win out over all of them, regardless of the order.

css Zen Garden
for below refer to page 1The Beauty of CSS Design
A demonstration of what can be accomplished visually through CSS-based design. Select any style sheet from the list to load it into this page.

Download the sample html file and css file
The Road to Enlightenment
Littering a dark and dreary road lay the past relics of browser-specific tags, incompatible DOMs, and broken CSS support.

Today, we must clear the mind of past practices. Web enlightenment has been achieved thanks to the tireless efforts of folk like the W3C, WaSP and the major browser creators.

The css Zen Garden invites you to relax and meditate on the important lessons of the masters. Begin to see with clarity. Learn to use the (yet to be) time-honored techniques in new and invigorating fashion. Become one with the web.

So What is This About?
There is clearly a need for CSS to be taken seriously by graphic artists. The Zen Garden aims to excite, inspire, and encourage participation. To begin, view some of the existing designs in the list. Clicking on any one will load the style sheet into this very page. The code remains the same, the only thing that has changed is the external .css file. Yes, really.

CSS allows complete and total control over the style of a hypertext document. The only way this can be illustrated in a way that gets people excited is by demonstrating what it can truly be, once the reins are placed in the hands of those able to create beauty from structure. To date, most examples of neat tricks and hacks have been demonstrated by structurists and coders. Designers have yet to make their mark. This needs to change.

Participation
Graphic artists only please. You are modifying this page, so strong CSS skills are necessary, but the example files are commented well enough that even CSS novices can use them as starting points. Please see the CSS Resource Guide for advanced tutorials and tips on working with CSS.

You may modify the style sheet in any way you wish, but not the HTML. This may seem daunting at first if you’ve never worked this way before, but follow the listed links to learn more, and use the sample files as a guide.

Download the sample html file and css file to work on a copy locally. Once you have completed your masterpiece (and please, don’t submit half-finished work) upload your .css file to a web server under your control. Send us a link to the file and if we choose to use it, we will spider the associated images. Final submissions will be placed on our server.

Benefits
Why participate? For recognition, inspiration, and a resource we can all refer to when making the case for CSS-based design. This is sorely needed, even today. More and more major sites are taking the leap, but not enough have. One day this gallery will be a historical curiosity; that day is not today.

Requirements
We would like to see as much CSS1 as possible. CSS2 should be limited to widely-supported elements only. The css Zen Garden is about functional, practical CSS and not the latest bleeding-edge tricks viewable by 2% of the browsing public. The only real requirement we have is that your CSS validates.

Unfortunately, designing this way highlights the flaws in the various implementations of CSS. Different browsers display differently, even completely valid CSS at times, and this becomes maddening when a fix for one leads to breakage in another. View the Resources page for information on some of the fixes available. Full browser compliance is still sometimes a pipe dream, and we do not expect you to come up with pixel-perfect code across every platform. But do test in as many as you can. If your design doesn’t work in at least IE5+/Win and Mozilla (run by over 90% of the population), chances are we won’t accept it.

We ask that you submit original artwork. Please respect copyright laws. Please keep objectionable material to a minimum; tasteful nudity is acceptable, outright pornography will be rejected.

This is a learning exercise as well as a demonstration. You retain full copyright on your graphics (with limited exceptions, see submission guidelines), but we ask you release your CSS under a Creative Commons license identical to the one on this site so that others may learn from your work.

Bandwidth graciously donated by mediatemple. Now available: Zen Garden, the book.

xhtml css cc 508 aaa

Select a Design:
· Under the Sea! by Eric Stoltz
· Make ’em Proud by Michael McAghon and Scotty Reifsnyder
· Orchid Beauty by Kevin Addison
· Oceanscape by Justin Gray
· CSS Co., Ltd. by Benjamin Klemm
· Sakura by Tatsuya Uchida
· Kyoto Forest by John Politowski
· A Walk in the Garden by Simon Van Hauwermeiren
Archives:
· next designs »
· View All Designs
Resources:
· View This Design’s CSS
· CSS Resources
· FAQ
· Submit a Design
· Translations

XHTML & CSS

Course notes

Session 18

Audio and Video

Audio
The following code will play the music file called magicnumbers.wav as an embedded audio file in your web page. You can you use the free program called AUDACITY, to record, edit and create music files in the appropriate format.

<object

classid=“clsid:22D6F312-B0F6-11D0-94AB-0080C74C7E95”>

<param name=“FileName” value=“magicnumbers.wav” />

<param name=“autostart” value=“true” />

</object>

If you want to put music on your site for people to download, create a music file in mp3 format, and use the following to put a link to your file, which will allow the download of a music file with the name royksopp.mp3.

Click to download

If you want to stream music, create a music file in rm format. An example of streaming audio is an internet radio station (either live or recorded). What you listen to is not permanently downloaded to your computer, but is streamed.

This example uses a music file with the name osborne.rm. Create a separate file (using notepad) with a pointer to your rm file as follows:

file://c:\osborne.rm
This is created in notepad (with nothing else in the file), and saved as osborne.ram

Then put this link into your webpage, which links to your ram file.

Click to stream

Video

The following will play the video file called gk.mpg. You can use Windows Movie Maker (free with Windows), or iMovie (free with MacOS X), to record and create video in the appropriate format.

<object width=“352” height=“288”

classid=“clsid:22D6F312-B0F6-11D0-94AB-0080C74C7E95”>

<param name=“controls” value=“ImageWindow” />

<param name=“autostart” value=“true” />

<param name=“src” value=“gk.mpg” />

</object>

Professional software
To create, record and edit music using professional software, you can use any of the following:

Adobe Audition: http://www.adobe.com/products/audition/
Cubase from Steinberg Media Technologies: http://www.steinberg.net/en/home.html
Protools from Digital Design: http://www.digidesign.com/
Logic Studio from Apple: http://www.apple.com/logicstudio/
Reason from Propellerhead: http://www.propellerheads.se/products/reason/
To create, record and edit video using professional software, you can use any of the following:

Pinnacle Studio (Consumer software): http://www.pinnaclesys.com/studio/
Adobe Premier Pro: http://www.adobe.com/products/premiere/
AVID from Avid Technology Inc: http://www.avid.com/
Final Cut Pro: http://www.apple.com/finalcutstudio/finalcutpro/
XHTML & CSS

Course notes

Session 19

http://geocities.yahoo.com/index.php
http://www.123-reg.co.uk/
http://www.webhosting.uk.com/

XHTML & CSS

Course notes

Session 20

Web Design Principles
2. Ockham’s Razor
"Never increase, beyond what is necessary, the number of entities required to explain anything."

William of Ockham (1285-1349)

3. Company name/logo
This should be a reasonable size in placed prominently at the top

4. Tag line
This should be short and apt and must explicitly summarise the site’s purpose (or company’s purpose)

5. Competition
Emphasise what your site does that is valuable from the user’s point of view, and how you differ from your competitors

6. High priority tasks
The most valuable area of a web page is the upper middle section. Emphasise important tasks by placing their links near the top of the page, in a prominent position. Don’t waste this space, it may be the only part of the page your visitors see.

7. 8 seconds
Your homepage must load completely within eight seconds. However, some useful content (useable text) must load within three seconds. Users will not wait around, especially now, in the age of broadband. Other pages within your site may take longer, within reason.

8. 50% above fold
Pages may be long, requiring users to scroll down, however, half of the page should be visible at any time. Never require users to scroll horizontally. The most critical content must be above the fold.

9. Consistency
Ensure the formatting of your site is consistent from page to page (colour, text, layout, writing style…). This is easily achieved using CSS. Ensure text and background colours are of high-contrast, and the choice of font is legible. Have only one page as the Homepage to your site, and make it clearly different in some way to the rest of your site, so users will instantly recognise it as such.

10. Customer focus
Use customer focussed language – what will your site do for the customer, not what value it has for your company. What information would be useful to your customer?

11. Avoid redundant content
Don’t repeat identical items on pages just to emphasise them. It will reduce their impact.

12. Avoid marketing lingo
Don’t use clever words or phrases that make people work too hard to try and figure out what you are saying.

13. Call to action
Use direct, imperative language, such as “Enter your email address” or “Buy now”. People are naturally drawn to text that tells them what to do, as they think they must follow the instructions.

14. Punctuation
Spell out abbreviations and acronyms the first time they are used and don’t put full stops between letters, eg B.B.C. is wrong, use BBC. Don’t use exclamations marks, they do not belong in professional writing!!! Use all uppercase letters sparingly or not at all.

15. Links
Differentiate links from the rest of the text, and make them scannable. Never use the phrase “Click here…” Allow colours to show visited and unvisited links. Don’t use redundant headings, such as Links, or News. If a link does not go to a new page, but instead opens another file, such as a pdf file or audio file, indicate it clearly next to the link along with the file size – don’t surprise your users.

16. Navigation
This should be in a highly visible area, adjacent to the main body of the page, near the top. If you use horizontal navigation at the very top of the page, do not put any graphics or banners below it. Users tend to ignore such graphics and any items in their vicinity. This is known as ‘Advertisement banner blindness’. Group similar link items together. Don’t provide the same links on different areas of the page, this will confuse people. Don’t include an active link to the page you are currently on. Don’t use made up words, like uCommerce instead of eCommerce – if you don’t understand them, your visitors won’t. Only use navigation icons/images if they instantly help users recognise the category, such as a shopping trolley.

17. Images
Have no more than three images per page, and only if they convey added meaning to that page – go back and look at principle number one. Avoid animation at all costs, it may look pretty to you, but is actually very distracting to your visitors. Does it convey something useful? If in doubt, leave it out. Above all, never animate company logos, tag lines or main headlines.

18. Gateway pages are a waste
Say no to ‘gateway’ pages, introductory pages before the main page. Sometimes they are accompanied by pointless ‘Flash’ animations that convey nothing to the meaning of the site, and serve only to irritate users. They also mean that your pages are less likely to be ranked by search engines.

19. 800 x 600
Design your pages to fit nicely into a monitor with a resolution of 800 x 600. By 2010, a resolution of 1024 x 768 will be the norm.

20. URLs
The homepage should have a URL of the type: http://www.mycompany.com or http://www.mycompany.co.uk or an equivalent for your country or type of site.

21. Brevity
Keep headlines short and sharp, and edit text content ruthlessly. People do not like reading text on a screen, it is very uncomfortable.

22. Usability
Learnability, Efficiency, Memorability, Errors and Satisfaction. How easy can users learn to accomplish tasks the first time they visit. How quickly can they perform these tasks once learned. Is it easy to remember when they visit again after a long period of time. How many errors do they make, how severe are they and can they easily recover from them. How pleasant is it to use the design.

If a website is difficult to use, people leave. It a website doesn’t deliver what it promises, people leave. If they cannot find the product, they cannot buy. There are not website manuals for people to read before using your site. A 10% budget spend on usability will increase usability by 50%.

Forget focus groups. This is a marketing tool. Asking people questions about the site won’t achieve your goals. Listening to what people say is misleading. It is better to test a representative group of users and watch what they do. About five is sufficient. Ask them to perform various tasks and observe what they do. Look at the mistakes they make, and change the design. Run many small tests and change the design incrementally between each test.

Firstly, test the old design. Test your competitors’ designs. Conduct field studies. Make prototypes of your site. Test them. Gradually improve the site through multiple iterations from results gathered from testing. Once you’ve built the final design, test it again, problems can creep in. Don’t leave testing until you’ve built the final site, as there will be too many structural problems to fix then which will require major architectural redesign.

23. Search
If you have a large site, more than 30 pages, consider adding a search engine to the site, to help people find what they want. You can use JavaScript combined with Active Server Pages, PHP or other scripting technology, or you can use Google’s free search utility.

24. PDF
Users hate to come across PDF files (use Adobe Acrobat Reader to read) while browsing a site. It is a jarring experience, which breaks the flow, is hard to navigate and can disorientate a user. PDF files are best suited to paper, so if you have a brochure, link to it, clearly marking it as a PDF file, so users can download and print it. (Indicate how users can save the file rather than opening it in the browser, and what software they’ll require). Never create PDF files instead of creating a web page.

25. Visited links
Always change the colour of visited links so users can keep track of where they’ve been.

26. Scannable text
A wall of text is deadly for an interactive experience. Intimidating. Boring. Painful to read. Write easily scannable text. Use subheads, bulleted lists, highlighted keywords, short paragraphs and a simple writing style devoid of marketese.

27. Inverted Pyramid
Start with a headline. Begin with the conclusion, then write the main points of your text, and then finish with the overall background. Keep paragraphs short, and have only one point per paragraph. Begin headlines, paragraphs and links with information carrying words.

28. Advertisement design style
Web users stop paying attention to any ads that get in the way of their desired goal. Unfortunately, users ignore any legitimate design elements that look like ads. So avoid designs that appear similar to conventional adverts: Banner blindness; animation and flashing avoidance; pop-up windows, which users will close before they have fully rendered.

Search Engines

29. Title tag
Use a short window title, do not include small words like ‘The’, and certainly do not include ‘Welcome’, ‘Home’ or ‘Introduction’.

30. Meta
Use description and keywords to help index your site.

<meta name=“description” content=“Enter a brief (up to 100 words) description of your website here”>

<meta name=“keywords” content=“Type (up to 100) keywords that you would expect users to type into a search engine in order to find your site; use lowercase and separate words with a comma and a space”>

31. Alt and Title attributes
Use these for all images, and most links. Optionally, use them for other content too.

32. Incoming links
Gain as many links to your site as possible. Contact your competitors.

33. Relevancy
Put as many relevant words on your pages as possible, in order to increase your ranking.

The Three Golden Rules
1. Validate your web pages. http://validator.w3.org/

All XHTML must be valid for it to work on all browsers. If it doesn’t validate - fix it!

2. Write clean, clear, STRICT XHTML using only logical tags (no physical formatting or layout, such as fonts, tables, colours or frames), and use CSS for all formatting and layout.

3. Create web pages with a clean, uncluttered appearance. Make it an enjoyable and easy experience for your visitors, and they will return.

http://en.wikipedia.org/wiki/PageRank
Further Courses

You can now create complete websites using XHTML and CSS. It is not strictly necessary to study any further courses. Many students have at this stage set themselves up as freelance web designers, and have built up a portfolio by creating websites for companies and businesses. Websites created using only XHTML and CSS are known as static websites. This means that every visitor will see exactly the same content. Pages cannot be customised for individual users. However, this accounts for the majority of websites that people visit and interact with on a daily basis.

The next step is to learn to use a client-side scripting language to bring a little interactivity between the browser and the visitor. Then a server-side web programming language should be learnt, in order to create dynamic websites. These kinds of websites display different content to different people, even though all visitors access exactly the same web pages. Examples include pages that remember your name or other details, web based email and online shopping baskets.

Remember: All web pages are written using XHTML and CSS. This forms the foundation of any web page, regardless of what other technology is added to the page, or how the page is created. Web design is not the same as graphic design. While there is some overlap, there are significant differences in the two disciplines. If you have a background in graphic design, you will now have realised that you need to apply different concepts to creating web pages. Pages that are created by only applying graphic design principles will be hard to navigate, have poor content layout, and may not work correctly in all browsers. Additionally, by writing your own code rather than using another program to do so, you will also have full creative control of the page. You will not be held back by the limitations and bugs of third party programs. If you can imagine it, then you can write it. As you progress onto learning other technologies, you will have to write all of your code yourself, so it makes sense to start and continue to hand-code all of your web pages.

34. New Computer
Celebrate your new web design skills and start your web design career with a brand new computer (laptop or desktop). In less than 10 weeks, you can own a fantastic quality computer, far cheaper and much better quality than one you could purchase in a shop. Don’t suffer with your old, slow computer. Just think how many hours of your valuable time you waste waiting for your old computer to do the simplest of tasks.

Join the course ‘Build Your Own Computer’.

Good reasons why you should join:

· Save money – building a computer will be much cheaper than buying the same computer from a shop

· Half price – typical savings can be as much as half the price of the same shop bought computer

· Discount – we order the components for you at discounted prices, so you don’t have to worry about finding them

· Best quality – the quality of the brand name components that make up the computer are far superior than the ones used in a shop

· Individual design – your computer can be customised to exactly what you want and need, unlike shop bought computers, where you have to buy and pay for poor quality things you will never use

· Take control – you will have an excellent understanding of how your computer works and what is inside

· Learn – this course is for beginners; anyone will be capable of easily building, upgrading or adding to their computer at any time

· Longevity – your machine will last much, much longer than any shop bought machine

· Computer now! – if you can’t attend the course but still need a computer, we can arrange to build your computer for you

· Laptop – although you cannot build your own laptop, we can order one with very high specifications for you

· Guarantee – all components are fully guaranteed for a minimum of one year, with several having a three year guarantee. In the unlikely event of anything not working, we will have it repaired or replaced

· Miscellaneous – buy only what you need: it may be possible to use your existing TV as your computer monitor; printers, scanners, webcams and digital cameras can be purchased if you need them; even re-use compatible components from your old computer to save money

If you want more information, or want to discuss your computer needs, components, and how little it will cost, contact rakesh.pawaroo@lbhf.gov.uk
35. JavaScript
Do no confuse this with Java, which is not related at all. JavaScript is a client-side scripting language. This means that JavaScript (a web programming language) is incorporated into an XHTML web page. The JavaScript is then downloaded with the XHTML and is interpreted by the browser on the visitor’s computer. JavaScript is most commonly used to validate forms, for example, warning you when you have forgotten to enter your post code or email address. It can also be used to create rollover images, drop-down or fly-out menus, and hide/display content depending on the position of the mouse. The danger of relying on JavaScript however is that if a browser is incompatible, or if JavaScript is turned off in a browser (often because people misunderstand that JavaScript is relatively secure, unlike Java), then your script will not work, which will have terrible consequences for your web page. The best compromise is to use the minimal amount of JavaScript on a page (or even none at all), and instead use a server-side programming language.

36. Active Server Pages (ASP.NET)
Active Server Pages is a Microsoft technology. ASP has now been superseded by ASP.NET, and is a fully featured server-side programming technology, incorporating Visual Basic and C#, (although VB Script or JavaScript can also be used). The massive advantage of using a server-side language is that the programming code is executed on the web server, not by browser on the visitor’s computer. This means that it does not need to rely on the visitor’s computer or browser being configured correctly. After the server processes the code, only pure XHTML is produced, which is then downloaded to the visitor’s browser. This means that all browsers, on all types of computers will be compatible with web pages using ASP.NET.

This technology is very useful. It allows you to create websites that provide unique content, tailored to each individual visitor. An example is this website you are viewing right now, where each student on the course has access to their own personal record of learning. Other examples include creating members only login pages, to protect some parts of your website; creating user registration forms where visitors can sign up on your site; receiving visitor feedback; counters that tell you how many visitors have viewed your page and where they have come from; creating forums; having visitors decide exactly what they want to view and how it should appear; online dictionaries; search engines; creating shopping baskets; monitoring stock levels and receiving email notifications when stock is low; and performing calculations on web pages. These examples only scratch the surface of what server-side technologies can do. It is possible to create very powerful applications. You only have to decide which one you would like to study. Some sites using ASP/ASP.NET: www.microsoft.com (obviously!); www.lbhf.gov.uk; www.tesco.com; www.ielts.org; www.loreal.com; www.starbucks.com; www.rbkc.gov.uk
Listed below are three alternatives to Active Server Pages.

37. PHP Hypertext Preprocessor (PHP)
PHP is another server-side programming technology that does everything covered by ASP. Some companies use ASP, while others use PHP. It is unnecessary to learn both. Decide upon one, and learn that one thoroughly. My personal choice is ASP, but don’t let that influence you. Some sites using PHP: www.wikipedia.com; www.sky.com; www.facebook.com; www.barackobama.com
38. Cold Fusion
Cold Fusion is yet another server-side technology, created by Macromedia. Fewer companies use Cold Fusion, but it is still a valid technology. However, my personal choice would be to stick to either ASP or PHP.

39. Common Gateway Interface (CGI) and Perl
CGI is again another service-side technology. Although many languages can be used to program CGI, the most common is Perl. Perl is marketed as a relatively easy language to learn. Many web hosting providers support CGI with Perl. Now, your hardest decision is to pick one of the above server-side technologies and stick to it. There is no real advantage in learning more than one, as they all achieve essentially the same objectives. It is better to become very proficient in one, rather than learn bits of each. If you are looking for employment, try searching job websites, such as Monster, and compare the number of jobs advertised for each different technology, which might help you make a decision.

40. Structured Query Language (SQL) and Relational Database design
If you want to learn a server-side technology, then you must learn how to create and query databases. Content and data can be stored in databases, and specific information can then be obtained and displayed in web pages. In fact, the content of entire websites can be stored in databases and displayed through the use of a server-side technology. Microsoft Access is a database you may already have installed on your computer. Learn how to create tables, set up relationships with referential integrity and to write Transact SQL to query the database. Additionally, MySQL is a free database which some companies use, while Microsoft SQL Server is yet another database that is frequently used by professional organisations, so it can be worth becoming familiar with these too.

41. Java
Do not confuse this with JavaScript, which is not related at all. This is a programming language which allows you to create complete applications that can either be run in a web page (Java applets), or as stand-alone applications on a computer. This is often used to create online games which can be played in a web browser. Java Server Pages (JSP) are server-side Java components, that typically generate XHTML in the same way as the others mentioned above.

42. Microsoft Visual Studio
This is an Integrated Development Environment (IDE) which can be used to create software using languages such as Visual Basic or C#, as well as complete websites using a variety of technologies, including XML, XSLT, XHTML, CSS, JavaScript and ASP.NET. This software can be used by many professional companies and therefore can be important to learn.

43. Microsoft Silverlight
Microsoft Silverlight is a programmable web browser plugin that enables features such as animation, vector graphics and audio-video playback that characterise rich Internet applications. It brings additional interactivity, features and support for .NET languages and development tools. It is compatible with multiple web browser products used on Microsoft Windows and Mac OS X operating systems. It has been hailed as the replacement for Flash, as Silverlight has far better features.

44. Dreamweaver
Another Integrated Development Environment, like Visual Studio. As far as XHTML and CSS are concerned, it is not necessary at all to use an IDE such as this one. Programs such as this simply write the code on your behalf in the background, while all you have to do is click the appropriate buttons to insert pictures and links. The code generated is not compact and will not be created in the best way. There will be limitations to what can be done with these programs, and you will still end up trawling through the automatically generated code in order to tidy it up and make it meet your ideal specifications. All code can be written far more efficiently by hand, using a text editor such as Notepad.

45. Flash
Flash allows you create pages with interactivity, animation, audio and video. It is possible to create entire Flash based websites. The danger of using such a technology is that if the visitors’ browsers do not have the appropriate, up-to-date plugin installed, then nothing will appear on the web page. Content can be bulky and take time to download to visitors’ computers. Many, many designers of Flash based websites are not web designers. They are in fact graphic designers. This is a completely different discipline, and although there are some parallels, graphic design concepts cannot be automatically applied to web design. The web has its own set of rules. Many Flash sites blatantly violate many of the most fundamental rules, the most important being the display of useful content, and easy navigation. If you must use Flash, do not create your entire site using Flash, but rather add Flash to certain pages where required – for example, to show animation, audio or video.

